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Ab«tract 

Th« atymptotlc dlttrlbution of the log-likelihood ratio la 

shown to provide a Mthod of detoraining approximate confidence limit» 

for any coherent system when each component haa an exponential life 

with unknown failure rate and component performance data are provided 

in the form, number of failures (minimum of one) and total operating 

time.    Some computational methods to facilitate the determination of 

the lover confidence bound at a given level are provided in the 

Important case of a series system.    A numerical comparison la made 

between the nominal confidence level and the actual confidence level, 

by counting the number of times the true reliability is caught within 

the confidence bound determined by the likelihood ratio method using 

repeated computations from random numbers generated with a apeclfied 

distribution. 
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(i.  IiurodiKtlon 

Thv problvn of establishing confidence llmlct for the reliability 

of «ynteiB« ha« now extended over a decade. The flret reeult» were thoae 

of Buehler |2| In 1957. The problem he considered was equivalent with 

finding exact confidence Unit« for two component» In series with 

binomial dara on each component. The construction of tables of exact 

bound» for up to three component Herles systems with various sample sizes 

for tl.e components was done by Llpow and Rlley [7). This work In two 

voIumeH wan publUhed by the Defense Documentation Center. 

however, the hulk of the tables for even such small numbers of 

component» made the use of simpler approximate confidence limits quite 

appealing. Madansky In (9) utilized the asymptotic distribution of the 

likelihood ratio and the usual practice of inverting a test to obtain a 

confidence bound, to yield approximate confidence bounds for series, 

parallel and series-parallel systems. 

Recently Lentner and Buehler [6] used the Lehmann-Scheff^ theory 

of exponential families to find exact confidence limits for the specific 

case of compononts in series.  Due to the difficulty in computing these 

limits, El Mawaziny and Buehler [4] give an approximation to this exact 

solution for tie case where the sample sizes for all components are 

large and the failure law for each component is exponential. 

El Mawaziny and Buehler make nu numerical comparisons of their 

approximate confidence intervals with those obtained by the exact method, 

or the approximations using the asymptotic distribution of the maximum 

likelihood estimates or the likelihood ratio. They do show that under 

ctrtain conditions on the component samples sizes their confidence 

-t- 
M^MM 



-2- 

limitM are  aaymptotlcally equal to both tht maximum likelihood limits 

and to th» apodal caie of Bayealan llmlta where the prior "denalty" la 

a particular nonprohnblllstic form. They atata that they do not believe 

that their method 1« applicable to other than teriea ayatema. 

Approximate confidence Intervale for the reliability of any aystem 

(or structure) which can be represented by a monotone Boolean function 

of Bernoulli varlates were obtained by Myhre and Saunders (10].  In (10] 

the component failure data were the outcome of a number of Bernoulli 

trial» for performance or nonperformance. That paper was an extenaion 

of the results of Madansky loc. clt., for series systems in that it 

depended upon the adequacy of the asymptotic distribution of the 

likelihood ratio. Here we will follow the same general linea of 

argument used in (1U| to obtain approximate confidence intervale for 

system reliability from samples cf component life lengths but the 

assumption of binomial data on performance of each component la replaced 

by the assumption of component life length being exponentially distributed. 

■ ■ 



1.    The Ctttmral Coherent Svttem 

Let the number of component 11 in a given ■yetem be   m. 

The etate of the components, at any given time    t   • 0,    is the 

random vector    lit)»   (Y^t) V**    where    Yi(t)'    a 

Bernoulli random variable,  is the indicator of performance for 

the J      component  at that  time.    It ia asaumed that the system 

has a unique represehtatlon as a nondecreasing Boolean 

function    ;,    the  functional value of which,     J(XU)).    is the 

Indicator of the state of the system.    We assume without loss of 

generality that each component of     $     is essential, p. 64,  (1). 

The reliability of  the J      component  is    EY.(t)    and 

similarly the reliability of the system is    EiQKt))    at any 

time    t      0. 

If the life length of the J1    component    X    - supU > 0: Y  (t) - 1} 

is exponentially distributed for    j-l,...,m,    then the density of    X 

is 

J 

(1.1) f.(t) - X    exp(-X t)   for   t > 0. 

Let X ■ {X.,...,A ) be a point in the parameter space 

3i '  {O,,...,Am): 0 < A < » j-1,...,m}. 

---*- 
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Siiuf w« art» primarily  interested In the ayetem reliability 

ut  .1 pit-Hi rlhi-.l tlnu-  (in •♦•rt/iln caaei called the mlaalon length) 

wt* i an without  IOHH of generality take it to be unity.    We now 

M) - K;|Y(I)| 

■   l*(y)  iTexpC-X  y )(l - e)cp(-A  )J      J 

y j.i J •' J 

whiTi«    >'-(•,•,...,>•)    la a vertex of the m-dlmenalonal unit 
1     in 

hypercube and the summation la over all such vertlcea. One seea 

thai 

(1.2)  h() - \  (y) Ti  'v. exp(->.) + (l-y,)(l - exp(-X.))}. 
y      j-1   -'      J      J J 

Suppose that    n     -   1    identical replications of the J 

component are tested  for    j-l,...,m. 

Consequently, ohservations are made on independent random 

variables Identically distributed as    X.,    which by our convention 

are   life  lengths expressed as multiples   (possibly less than one) 

of  the given mission length.     Call  these variables    X..     for 

i"l,...,n ,. 

We  postulate that  often  In practice the random variable which 

Is  actually observed   Is    mln[X..,Z,   1    where    Z.,     is  the  random time 

(again expressed in  terms of mission length)  at which the  test of the 

.    .  
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1 ' rt'pllrution of tlie )  component will terminate for any reason 

oilier than failure of the component. Perhaps Z       Is degenerate at the 

fixed time at which the test Is terminated, this time being determined by 

the funds available fur testing and known prior to the test's commencement. 

Alternatively, 7.   could be the random time of failure of ancillary test 

equipment which causes the abortion of the test, or any one of a hundred 

other causes.  The important point Is that we observe the events 

(1.3) 

,xij ' "n1 n lXlJ <  ^j1   i-l.---.8j 

lZlJ " ZiJ1 n [Xlj ^^j1   l-8J+l..-..nj 

whert! h  (the number of complete life observations of the J 

roraponent) is an observed value of a random variable determined by 

the julnt distribution of Z.. i-l,...,n., which is unspecified. 

(Under special circumstances the distribution of the number of observed 

failures is known to be Poisson.) 

Sometimes, of course, It Is decided prior to the start of the 

test of the j  component that it will be terminated at the s.  failure 

Here s  would be a known parameter and the time of completion of the 

test would become a random variable. The required Joint distribution 

of Z   l>l,...,n  can be surmised for this case. 

We will now state a well-known result as 

Lemma 1:  If  (Z.,...^ ) is a vector of non-negative random 
In 

variables independent of (X.,...^ ) which are themselves identically 

distributed non-negative random variables with coiranon density f, then 

the likelihood of the event 

-'    ■   - ■       
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(i.4)        n   ix. _ z.nx   - x.]    n    (x. > z.][z. - z.] 
i-i     l       l     1       1    l-k+l     iiii 

is of   the form 

K "TT f(*.) fr U - F(z,)] 
1-1        1    k+1 J 

where K does not depend upon f. 

Proof. Let C,    be the joint distribution of (Z.,...,!),    then 

the probability of the event specified in (1.4) is 

/■ r   k n 

/ ... YJ {(*)    TT    [1 - F(z  )]dG(z    z) 
■{z1>x1  l»l,...,kr   1=1 i-k+1 i i n 

which  upon simplification  shows  that 

•   •   • 
{z ^  i"l,...,k} 

JdG(z.,... ,z  ), 

and thus for any observed failure times  (x.,...,x. ) , K does not 

depend upon f.| ' 

This lemma, in equivalent forms, was given earlier by Herd [5] and 

Sampford [11]. Also in this connection see the discussion by Cohen in 

[2]. 

Throughout what follows we shall assume that Z. .  for i"l,.,.,n., 

have a distribution such that with probability one 

(1.5) 0< si  <nr 

-  MimiUatmmmmäimtm^mtiimi^mlmlmmtamiMmami^t^^^ulm^ammmlmimätim^imiaM MMMHMMMMH 
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It  Is  clear now that the log-likelihood function for the «.'.ifffi«« 

from the j      component may be written as 

exp{L*(X)} - K   ftf  (x,,)    Ff     (1-F.(z..)) 
J J i-1    J    1J    i-s.+l 2    1J 

where K.  is a constant not depending upon the parameter X of v 

distribution. 

From the specific assumption made in (1.1), by setting L* L« 

we find 

m 
(1.5.1) L*(A) - £ [in  K + s. £n X, - X.t,] 

j-l 
j  "j   "j  TJ 

where for typographical convenience we denote the total test time 

(in fractions of the mission length) of the j  component by 

1   ■ 

» 
i  ■ 
i 

(1.6) 
J J 

i-1    iJ       i-Sj+1    1J 

The logarithm of  the likelihood ratio,  say    L(r),    is given by 

i   ! 

1 

\ 
■ 

4 l 

L(r) -    sup  L*(A) - sup L*(X). 
{X:h(X)-r}       Xe3f 

We now follow the usual method of inverting a test, in this case 

the likelihood ratio test, in order to obtain a confidence interval. 

Proceeding as we have done in [10] we utilize Wilks* theorem [14] 

on the asymptotic behavior of the logarithm of the likelihood ratio to 

i . 

1 

I 

1; 
I; 
s; 

,,■.-—....„ '-■-'■--li.. «i    i     ii    i > J   ■   ■ - -     -■--.-..^.,-, — r ■..»>■.in.■>,..,..■,■.?,   ...li,,,   ,^--., - ...i». i-,»     .iliiiiii-n 
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obtaln a confidence si't  of  level    y    for  the system reliability at 

llif mission   length.     This  is 

(1.6.1) (r:  -2L(r) <  x
2(l)} 

2 tli 
wlu-re     ,   (1)     Is   thf   ,       quantile of the Chi-square distribution with 

i 

one  degreo  of  freedom. 

Since  the maximum  likelihood estimate of    A       is 

',  -  f j-l,...,m 
J        j 

Wt»   see 

L*(-)   =  sup  l.*(A) 

m 
^    |in K    + s    >n s    - s  {in t. + 1)]. 

i _ i J        .1 J        J J 

To maximize !,*(•) subject to the restriction h(A) ■ r we use 

a Lagrauge n.ultipKr •,    take partial derivatives, and equate to zero, 

—- IL*(.) - 5h(A)] - 0. 

Tills   is equivalent  with 

-   ^1    Is,   '"  '<  -   *4ti " «5h(A)l - 0, 

and   tliiis we  ulii.iin 
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8i 
(1.7) T"t.m  ^.h(x) 

j   J 

where 3 h is the partial derivative of h with respect to A.. 

The existence of 3 h follows from the definition of h. For given 

6 denote the vector solution of (1.7) by A(6), assuming presently 

that it exists and is unique within 31,    which we shall later prove 

in Theorem 3. Note that X(0) ■ X. 

Since Lagrange multipliers are being used it will be shown that 

the confidence set may conveniently be written in terms of the 

multiplier 6 rather than in terms of the reliability r. 

First define 

(1.8) A(6) - L*[X(5)] - L*(X) 

f 
for those values of 6 for which A (6) exists. It will be shown later 

I 
in Theorem 4 that the existence of unique X.(6) implies the existence of 

the derivative A'(6). Thus it is possible to differentiate A with 
J 

respect to 6.  Since 

m 
A(6) -   J    [s    in X   (6) - X   (6)t    - s    in s    + s    in t. + s.] 

Ami J J JJJJJjJ 

m s 

'"»■^[T^T-V»]«) 

which by equation (1.7) shows 

m 
A^ö)- I    634h[X(6)]x!(6) - 6 ^rh(X(6)] 

j-1  J       J       d6 

- - ---   ■ ■ -   .-...-^■-^ 
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From this equation there follows 

Lemma 2: At each  ^ for which X(5) exists h.\((5) is monotone 

decreasing In A     if and only if A (6) is monotone decreasing in (5 

for  ' ■ Ü and monotone increasing in 6 for 6  <  0. 

Using this result we obtain 

Theorem 1:  If li'(*) is monotone decreasing across an Interval 

[f>   ,6 ] where &    -- 0  <  i      are two values of >5  for whicn 

A(6) = -b x2(l) 
Y 

then 

(1.8.1)   (r: hi (A") ■ r • h^+)} '  {r: 2L(r) < x2(l)}- 
- Y 

Proof.  Sine«.- In (6) is a one to one transformation for each 

2 
given r for which 2L(r) <  v (1), there exists a unique 6  such that 

- Y '   r 

h.\ (6 ) = r.  Thus by definition we have 

L(r) - L*[A(6r)] - L*(X) - A(6r) 

and the parameterization of L by r may be replaced by that of A by 

6. | | 

To complete this argument we must show that there exists values of  6 

for which  '(')  exists uniquely, and hopefully can be easily found, 

and also that there exists values of 6 in an Interval about zero for 

which li>(*)  is decreasing. We turn to the first task now. 
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The transformation A from 31   into 3i   for fixed 6  we define 

by setting its j  component for j-l,...,m 

(1.9) Aj(X;6) ' t^hiX)  • 

This is suggested by solving (1.7) as if 9.h were constant. 

^.r. is  clear that A (A;6)  is continuous in 6.  Since 3.h(A) < 0, 

see equation (1.14) below, A (A;*)  is an increasing function of 6 

for t > -63.h(A). 

We now quote from [10] a result easily proved, that for a,b e (0,1) 

and a,ß any real numbers 

(1.10) aa-b6 < a-b + a-ß 

For a given structure * define the critlcality of the j 

component In the structure by 

th 

(1.11) Cj - V *(y|j:l) - *(y|j:0) 

where  (y|j:x) = ^i** " >y4~i**»y*+i* "* rf^    for x 

We now have 

- 0,1. 

Theorem 2: For each *  (or h) and all 6 such that 

m  s.c, 
(1.12)    mln(t1 t ) > 6 > 0 and  Y   ■ ^ 0 < ■?- 

i     m .^i /.  .v2  ö 1-1 (tj-6)' 
. 

' 

- 
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the transformation ACsO is a contractive map of the complete metric 

space  C%d)  into Itself where 

1 m 

d(' ,i.) = - ^  I A -yj  for  \ ,u i.&. 

Proof.  It must be shown that there exists p c [0,1)  such that 

dlA('),A(ii)] <. pd(A,p)  for all  X,ME5£. 

Note that throughout tliis proof we shall omit showing the dependence of 

both A and p upon  '  in order to simplify the notation.  Now 

s.6[9.h(y)-3 h(A)] 
A.(.)  -  A.(;,)  =  J J 1 

i '   r '  [tj+6a1h(A)](t +5ajh(u)] 

Since by known properties of coherent systems, see [1] 

Uy) = y.r(y|j:l) + (l-y.)'l'(y | jsO) 

substitute    Y   (1)     for    y,    and take expectations  to obtain 

-A -A 

h(>)  = e    Jh(Al.1:l) +  (1-e    ;])h(X | j :0) . 

Now 

(1.1A) :..h(\)  = e    ^hCAlj^)  - h(A|j:l)]. 

- --■       -      -  ■ - -■   -■■■' -     -  ■        i     wmmttrntrntammmmnmimmmmmmmmamm 
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If we continue    lit- expansion we obtain 

;»l.(A)-e   j V {(HylJtO) - *(y|jjl)l TT ty^    ^(l-yJU-e    ^l). 

Thus writing out    3,h(v) - y.h(\);    using the definition of   (1.11) and 

applying the inequality  (1.10)  repeatedly on the last fraction we find: 

m        -\i, -\ 
).h(p)  - 3.h(,\)|  1 c.    I    |e    i - e    1| 
J J 3   iml 

~Xi        ~Ui 
Since     |e -e       I  i. I^J  ~ W* I 

and 

3.h(u)  - 9 h(A)|   <_inc d(X,u) 

m s c 6d(A,u) 
d(A(O.A(u))  <  ^   [y69jl!(;)][y63jh(,)]   ' 

Since each component  is  essential It  follows from  (1.14)  that 

D.hU)  <  0    as    0 «   h(x|j:l)  - h(X|j:0) <  1.    It also follows from 

(1.14)   that    ah (A)  >^ -e    J   >.-1.     Thus It  Is sufficient  to require 

that   (1.12) hold for    ö > 0    and   (1.13) hold for    6 < 0.1 I 

For any    X"  c&   we define the sequence 

An(6)  - A(An'1(6);6)        n-1,2,... 

where 

X0(6)  -  A" 

■^ 

 i ii      m^dumnn^gan^jugiMiaMM MMM^MBM^M^^M^a^^MMM 
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Theorem 3:  For every 6 in the neighborhood of zero defined by 

the inequalities (1.12) and (1.13), a unique solution to the system of 

equations (1.7) exists, call it X(6).  It can be found for any initial 

point \0  f. 3f   as  lim An(6) - Ä (6). 
n «■'« 

Proof.  That A(';6)  for 6    within the prescribed neighborhood 

of zero has a unique fixed point 

A (6) = lim An(6) - A(A(6):5) 

follows from the known behavior of contractive maps, e.g. see p. 27, 

[8].!l 

Thus we have established the first claim which was made, namely 

that A(6)  exists uniquely.  Now we prove 

Theorem 4:  The function A(*)  is a continuously differentlable 

function within the neighborhood of zero prescribed by (1.12) and (1.13) 

Proof.  Fix 5 within the prescribed neighborhood and let B be 

the vector valued function with its j   coordinate defined by 

B.(A:6) = 63,h(A) + t - r1 . 

By Theorem 3 the equation B(A:6) ■ 0 has a unique solution, call it A. 

Thus the Jacobian is not zero, i.e. 

det 3iB (Ä;6) +  0. 

From the implicit function theorem the continuous differentiability of 

the function  B  is Inherited by A.  Thus if A  exists it Is continuously 

differentlable. I I 

 ■  
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In view of Theorems 3 and 4 it remains only to show that hA(6) 

is a decreasing function of 6. We then have the result that for any 

coherent structure    an approximate confidence interval for the 

reliability function h  Ls given by (1.8.1) in Theorem 1. 

Theorem 'i:  For any coherent structure $ with reliability 

function h and any failure data such that s > 1,  there exists 

a neighborhood of zero in b     across which hA(f5)  is decreasing in 6. 

Proof. Take the derivative of both sides of (1.7) with respect 

to 6, primes denoting such differentiation, we obtain for j"l,...,m 

m 
(1.15) 

cy 
A! = * hA + 6 ^ „ 3^h(A) 

i-1 12 *; 

where we have omitted the argument 6. Multiply by  A'  on both sides 

of (1.15) and sum to obtain 

m 
V ^-C')2 

J-10/  j 

m mm 
1 3.h(A) ' A' + 6 V  V 3.,h(A)Ä'Ä' 
j-1 J       J    i-1 j-1  1J    1 J 

which is equivalent with, 

m  m 
(1.16) - ^-h[A(S)] = N —Lj (A:)Z + 6 J  J  3.,h(A),\,,A' 

j-1 (Aj) 1=1 j-1 ij V ' i j 

For    <S = 0,     (1.16)   is positive and from the continuity of    TThFUo)] 
do 

it follows that there exists a neighborhood of 6 about zero such that 

hUA)  is a decreasing function of  6, | | 

—*. 
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Thus for any coherent structure where the data on each component's 

reliability consists of knowing the times of failure or the lengths of 

time a component worked without failure, assuming the life length of 

the Individual components are exponentially distributed, It Is possible 

to find an approximate confidence Interval of some level about the 

..maximum likelihood estimate of the system reliability at the given 

(mission) time. Of course, it may not be possible that an approximate 

confidence interval of arbitrary level can be found for every structure 

and every set of sample da.a, but it is always possible to obtain an 

interval estimate. 

  -   -       -' .,^_„__J_J—__^M^»^_M^—————MM—■ 
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2. The Series System 

For any coherent structure $    with associated reliability function h, 

there exists a series system, the reliability of which bounds the system 

reliability h  from below, i.e. 

(2.1) h(A) >_ exp 
m 

J-l  ;l J 

where v.  is the number of minimal cuts of h  (or Q)  which contain j 

as a member. For the exact definition of minimal cut and a more detailed 

discussion of this point, see [12]. 

Because of this fact we will, in this section consider only the case 

in  h(X) ■ -Iv.A.  and obtain a lower confidence bound. We think this iL> 

the most important case. 

We will follow the general procedure which has been presented in 

the preceding section. However, as a convenience we reparametrize by 

imposing the restriction in the form that the in  h(A) is constant, 

and equate 

[L*(X) - 6 in  h(X)] - 0. 
d\ 

J 

Thus we obtain, instead of (1.7), the equation 

(2.2) li-t -6v. 

which has  the explicit solution 

V6) 
Vh 

j"l,...,m. 

4»*aa>Ma»iaiMadfe*>lla 
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Thus in this particular case, it is unnecessary to use the general 

contractive map theorems in order to calculate Ä(6) ■ (JÜCö)» • • • »X (ö)) • 

For this special case we find, using (1.5.1) and (1.8), 

m 
A(6) - V s.[l -   ,   ,..   „ 

T4 T. 
+ £n(—V)] 

where T. ■ t./v. for J-l,...,m. In accord with finding only a lower 

confidence bound, we want co solve for x > 0 such that 

(2.3) A(x) - -h  x (D. 
Y 

where x (1) is the ^-OOy  percentile of the Chi-square distribution 

with one degree of freedom. Call the solution of (2.3) the value 6 < 
Y 

Then 

h(A(6 )] - exp - 1 
m  s 

1 

J Y 

is an (approximate) lower bound for h(X) of level ^r*- , rather than 

of level Y» since we are obtaining only a one-sided confidence bound. 

We now exhibit a practical method for the determination of 5 . 
Y 

For a given y. 0 < y < 1 there exists an x > 0 such that f(x) - 0 

where 

(2.A) 

f(x) - -A(x) - h  x^d) 
Y 

m     T.       T.      m        9 

^ 8iI7^-an<r^)] - S •»i-'sx^i). 
i-i i Ti x     Ti x     i  i     Y 

-— -- ■ i - - - 
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The solution of f(x) - 0 must be unique since 

m 
f(x) - x S > 0 

1-1 (T^X)' 

whenever   0 < x < mln(T,,...,T ) ■ T,.*,    which Is a more stringent i m   KX) 

condition than (1.12). But note that 

m    T .+x 
f"(x) - I 8i —i j > 0 

1-1   (T^X)" 

for 0 < x < T 
(1)' 

Thus we see that both f'.f", which are continuous, do not vanish 

for 0 < x < T..V. These are sufficient conditions that the Newton 

iteration procedure, namely 

"n " Vl " f («„ ,) 
n-i. 

n—1,2,. • i, 

will converge to the value 6 . 
Y 

We now state the 

Theorem 6: Let the data (t^s^  1-1,...,m be given, where t. 

represents the total test time for the i  component and s. ^ 1, 

represents the number of failures of that component during that time. 

If v  Is the crltlcallty of the 1  component in any structure being 

measured by the number of minimal cuts of the system which contain the 

1  component as a member, and T - t./v , then 

- '— ■■-     - - 
- 
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exp 

(2.5) 

\  1_ for  0 < t « T.-./d 
(i; v 

for   t > :t,Ji 
-     (1)  Y 

is a lower confidence bound cf level lH 
where 0 < Y * 1 Is 

pri-selected, for the system reliability for all time t > 0. The quantity 

5   is the solution of the equation f(x) «0 and  f was defined in 

equation (2.4). 

Proof. We have only to remark that the selection of a time scale 

In terms of mission length was arbifary so that the bound derived 

previously can be used for the reliability at all times.I| 

MBBM^MM 



-21- 

3. A Numerical Illustration 

As a numerical Illustration of the behavior of the previously 

outlined procedure we shall study its performance on a specified series 

system with ten components. Take m - 10. We shall assume that 

^. ■ 1 for j-l,...,10. Thus the true reliability of the system is, 

by (1.2)  e 
-10t 

for t > 0. We also assume that n. ■ u. • 1 and 

thus T. ■ t. for j"l m. 

We will now generate 10 exponential variates, t. t , each 

with unit mean and solve the equation f(x) • 0 where 

(3.1) f(x) - I 
i-1 

t.-x   n t.-x' 

and    C      is a constant determined by the nominal level of the confidence 

bound. 

We find that for    Y ■  .95,    C 95 - 11.353.    Call the solution of 

(3.1)  the value    6   .    The lower bound for the reliability is by  (2.5) 

(3.2)        exp 
m 

-    1    (" 
i-1     t,/t-6r 

i       Y 

for        0 < t < { t,.., 
Y   (1) 

and the confidence level is    97.5, 

Generating forty independent observations of an exponential variate 

with unit mean,  resulted in the following four samples: 
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As a further illustration of the stochastic behavior of this 

method we shall repeat the entire procedure two thousand times but 

instead of calculating the entire lower bound function we shall only 

compute (3.2) at t ■ .01.  Then we shall make a frequency histogram 

of the values of the reliability bounds for the specified value 

t ■ .01. The twenty percentile points, successive differences being 

.05,  of the empiric distribution are: 

Percentile Percentile P 

.05 0.106621 

.10 0.297174 

.15 0.417770 

.20 0.492659 

.25 0.552798 

.30 0.596593 

.35 0.632835 

.40 0.665383 

.45 0.689521 

.50 0.707729 

.55 0.730936 

.60 0.750021 

.65 0.767430 

.70 0.782541 

.75 0.798792 

.80 0.815686 

.85 0.833291 

.90 0.851064 

.95 0.877483 
1.00 0.940218 

A graph of the empiric distribution is given in Figure 2.  Note 

that the true reliability of e"' - .904837 slightly exceeded the 

nominal 97.5 percentile.  In fact the actual count was 1979 values 

less than e '  out of the 2000 observations sampled.  This was 

approximately the 99th percentile. 
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Figure 2.  Empiric distribution of the 97.5 per cent lower confidence 
bound using 2000 observations when the true reliability is 

e"*1 -  .905. 
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Thus we see the stated confidence level of 97.5 percent appears 

to be, in this Instance, slightly conservative.  To check this we 

repeated this entire experiment a second time and we observed 1990 out 

of 2000 observations of the reliability bound were less than e 

which increases our suspicion of a slightly conservative tendency 

for the level of confidence in this case. 
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